

Role of digital technology in energy transition

Discussion with Case Stud

1ST OCTOBER 2020 SATOSHI YAMAZAKI

THREE STRATEGIC PLAYS PROVIDE NEW VALUE DRIVERS FOR THE ENERGY COMPANY OF TOMORROW

Conventional generator

- Large-scale renewables
- Seasonal storage
- Hydrogen
- Biofuels

Grid operator (TSO/DSO)

Smart DSO – Manage congestion

- Accommodate DER in the grid
- Flex markets

રંભુર

- Data hub for market facilitation
- Biogas, Hydrogen distribution

- Retail Energy Management Services (REMS)
- Decentralized Energy Resources (DER)
- Electric vehicles
- Flexibility services

NETWORK OF THE FUTURE

CONNECTED ENERGY SERVICES

CURRENT

NEN

THE ENERGY TRANSITION IS TRANSFORMING ALL SEGMENTS

21 Priority ETS Topics

UK OFFSHORE WIND IN NUMBERS

7.9GW/ 38 farms

Offshore Wind Installed Capacity (largest in the world, 43% of Europe)

30GW

Target capacity by 2030 with 5.8GW financing secured or under construction

>8% generation

Offshore wind supplied 8% of the UK's total estimated electricity generation in 2018. It was higher in 2019 and increasing

40%

Average offshore wind capacity factor

40%

LCOE in the Operations phase (and 70% of the time)

£39/MWh

£39.65 (\$50.05)

UK 3rd round cfd auction

\$

12MW

Size of the largest fixed offshore wind turbines, to be installed at SSE's and Equinor's Dogger Bank development (largest is 8.8 GW)

659MW

World's largest offshore wind farm-Walney Extension completed in 2018 >30 years

Some new projects estimate potential asset life

HISTORY OF OFFSHORE WIND IN THE UK

FORECAST in 2011

Source: 2011 Accenture offshore wind report

It actually happened. How?

- LCOE change, from >£150/MWh to est. 3rd round auction of <£40
- Turbine size, from <2MW to 8.25MW to 12MW
- Offshore visits cut in ½ over the last 4 years
- From 30% capacity factor in 2005 to 40% in 2018. Some newer sites can achieve 50%
- Turbine supply chain and development of other local supply chains
- Purpose built vessels

OFFSHORE WIND COST STRUCTURE

40% OF COSTS, AND 70% OF TIME SPENT NOW IN OPERATIONAL PHASE

Dev	EPC	O&M	Decom
3-5 Years	2 Years	25 Years	2 Years
	Turbine BoP 24% 20%	O&M	
Development	Installation 12%	40%	Decom

Source: Offshore Wind Catapult

KEY CHANGE FROM 2011 TO 2020

- In-house EPC capability enabling decisions that will reduce LCOE (e.g. invest in CBM to save on O&M)
- More O&M control post warranty, and renegotiating/ restructuring full-service O&M contracts
- Investing in digital and automation given largely manual processes where problems repeated over 100x
- Increased focus on the basics: logistics, maintenance, materials supply chain, workforce processes

ENERGY IOT PLATFORM

COMMERCIAL ENERGY IOT PLATFORM IS ALREADY AVAILABLE AND STRONGLY SUPPORT "CARBON ZERO WORLD".

- ✓ Envision Energy is founded in 2007. Now Top 5 in world wind turbine.
- ✓ Envision Digital provides comprehensive Energy IoT platform, EnOS[™]. Big data and advanced analytics

Envision Renewable Digital Solution Suite

Copyright © 2020 Accenture. All rights reserved.

Case₂

